
Figure 2.4 Two mirrors can produce multiple images. (a) Three images of a plastic head are visible in the two mirrors at a right
angle. (b) A single object reflecting from two mirrors at a right angle can produce three images, as shown by the green, purple,
and red images.

2.2 | Spherical Mirrors

Learning Objectives

By the end of this section, you will be able to:

• Describe image formation by spherical mirrors.

• Use ray diagrams and the mirror equation to calculate the properties of an image in a spherical
mirror.

The image in a plane mirror has the same size as the object, is upright, and is the same distance behind the mirror as the
object is in front of the mirror. A curved mirror, on the other hand, can form images that may be larger or smaller than the
object and may form either in front of the mirror or behind it. In general, any curved surface will form an image, although
some images make be so distorted as to be unrecognizable (think of fun house mirrors).

Because curved mirrors can create such a rich variety of images, they are used in many optical devices that find many uses.
We will concentrate on spherical mirrors for the most part, because they are easier to manufacture than mirrors such as
parabolic mirrors and so are more common.

Curved Mirrors
We can define two general types of spherical mirrors. If the reflecting surface is the outer side of the sphere, the mirror is
called a convex mirror. If the inside surface is the reflecting surface, it is called a concave mirror.

Symmetry is one of the major hallmarks of many optical devices, including mirrors and lenses. The symmetry axis of such
optical elements is often called the principal axis or optical axis. For a spherical mirror, the optical axis passes through the
mirror’s center of curvature and the mirror’s vertex, as shown in Figure 2.5.
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Figure 2.5 A spherical mirror is formed by cutting out a piece of a sphere and silvering either the
inside or outside surface. A concave mirror has silvering on the interior surface (think “cave”), and a
convex mirror has silvering on the exterior surface.

Consider rays that are parallel to the optical axis of a parabolic mirror, as shown in part (a) of Figure 2.6. Following the
law of reflection, these rays are reflected so that they converge at a point, called the focal point. Part (b) of this figure shows
a spherical mirror that is large compared with its radius of curvature. For this mirror, the reflected rays do not cross at the
same point, so the mirror does not have a well-defined focal point. This is called spherical aberration and results in a blurred
image of an extended object. Part (c) shows a spherical mirror that is small compared to its radius of curvature. This mirror
is a good approximation of a parabolic mirror, so rays that arrive parallel to the optical axis are reflected to a well-defined
focal point. The distance along the optical axis from the mirror to the focal point is called the focal length of the mirror.

Figure 2.6 (a) Parallel rays reflected from a parabolic mirror cross at a single point called the
focal point F. (b) Parallel rays reflected from a large spherical mirror do not cross at a common
point. (c) If a spherical mirror is small compared with its radius of curvature, it better
approximates the central part of a parabolic mirror, so parallel rays essentially cross at a
common point. The distance along the optical axis from the mirror to the focal point is the focal
length f of the mirror.

A convex spherical mirror also has a focal point, as shown in Figure 2.7. Incident rays parallel to the optical axis are
reflected from the mirror and seem to originate from point F at focal length f behind the mirror. Thus, the focal point is
virtual because no real rays actually pass through it; they only appear to originate from it.
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Figure 2.7 (a) Rays reflected by a convex spherical mirror: Incident rays of light parallel to the
optical axis are reflected from a convex spherical mirror and seem to originate from a well-defined
focal point at focal distance f on the opposite side of the mirror. The focal point is virtual because no
real rays pass through it. (b) Photograph of a virtual image formed by a convex mirror. (credit b:
modification of work by Jenny Downing)

How does the focal length of a mirror relate to the mirror’s radius of curvature? Figure 2.8 shows a single ray that is
reflected by a spherical concave mirror. The incident ray is parallel to the optical axis. The point at which the reflected ray
crosses the optical axis is the focal point. Note that all incident rays that are parallel to the optical axis are reflected through
the focal point—we only show one ray for simplicity. We want to find how the focal length FP (denoted by f) relates to
the radius of curvature of the mirror, R, whose length is R = CF + FP . The law of reflection tells us that angles OXC

and CXF are the same, and because the incident ray is parallel to the optical axis, angles OXC and XCP are also the same.
Thus, triangle CXF is an isosceles triangle with CF = FX . If the angle θ is small (so that sin θ ≈ θ ; this is called the

“small-angle approximation”), then FX ≈ FP or CF ≈ FP . Inserting this into the equation for the radius R, we get

R = CF + FP = FP + FP = 2FP = 2 f

Figure 2.8 Reflection in a concave mirror. In the small-angle
approximation, a ray that is parallel to the optical axis CP is
reflected through the focal point F of the mirror.

In other words, in the small-angle approximation, the focal length f of a concave spherical mirror is half of its radius of
curvature, R:
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(2.2)f = R
2 .

In this chapter, we assume that the small-angle approximation (also called the paraxial approximation) is always valid.
In this approximation, all rays are paraxial rays, which means that they make a small angle with the optical axis and are at
a distance much less than the radius of curvature from the optical axis. In this case, their angles θ of reflection are small

angles, so sin θ ≈ tan θ ≈ θ .

Using Ray Tracing to Locate Images
To find the location of an image formed by a spherical mirror, we first use ray tracing, which is the technique of drawing
rays and using the law of reflection to determine the reflected rays (later, for lenses, we use the law of refraction to determine
refracted rays). Combined with some basic geometry, we can use ray tracing to find the focal point, the image location,
and other information about how a mirror manipulates light. In fact, we already used ray tracing above to locate the focal
point of spherical mirrors, or the image distance of flat mirrors. To locate the image of an object, you must locate at least
two points of the image. Locating each point requires drawing at least two rays from a point on the object and constructing
their reflected rays. The point at which the reflected rays intersect, either in real space or in virtual space, is where the
corresponding point of the image is located. To make ray tracing easier, we concentrate on four “principal” rays whose
reflections are easy to construct.

Figure 2.9 shows a concave mirror and a convex mirror, each with an arrow-shaped object in front of it. These are the
objects whose images we want to locate by ray tracing. To do so, we draw rays from point Q that is on the object but not on
the optical axis. We choose to draw our ray from the tip of the object. Principal ray 1 goes from point Q and travels parallel
to the optical axis. The reflection of this ray must pass through the focal point, as discussed above. Thus, for the concave
mirror, the reflection of principal ray 1 goes through focal point F, as shown in part (b) of the figure. For the convex mirror,
the backward extension of the reflection of principal ray 1 goes through the focal point (i.e., a virtual focus). Principal
ray 2 travels first on the line going through the focal point and then is reflected back along a line parallel to the optical
axis. Principal ray 3 travels toward the center of curvature of the mirror, so it strikes the mirror at normal incidence and is
reflected back along the line from which it came. Finally, principal ray 4 strikes the vertex of the mirror and is reflected
symmetrically about the optical axis.
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Figure 2.9 The four principal rays shown for both (a) a concave mirror and (b) a convex mirror. The
image forms where the rays intersect (for real images) or where their backward extensions intersect (for
virtual images).

The four principal rays intersect at point Q′ , which is where the image of point Q is located. To locate point Q′ , drawing

any two of these principle rays would suffice. We are thus free to choose whichever of the principal rays we desire to locate
the image. Drawing more than two principal rays is sometimes useful to verify that the ray tracing is correct.

To completely locate the extended image, we need to locate a second point in the image, so that we know how the image
is oriented. To do this, we trace the principal rays from the base of the object. In this case, all four principal rays run along
the optical axis, reflect from the mirror, and then run back along the optical axis. The difficulty is that, because these rays
are collinear, we cannot determine a unique point where they intersect. All we know is that the base of the image is on the
optical axis. However, because the mirror is symmetrical from top to bottom, it does not change the vertical orientation of
the object. Thus, because the object is vertical, the image must be vertical. Therefore, the image of the base of the object is
on the optical axis directly above the image of the tip, as drawn in the figure.

For the concave mirror, the extended image in this case forms between the focal point and the center of curvature of the
mirror. It is inverted with respect to the object, is a real image, and is smaller than the object. Were we to move the object
closer to or farther from the mirror, the characteristics of the image would change. For example, we show, as a later exercise,
that an object placed between a concave mirror and its focal point leads to a virtual image that is upright and larger than the
object. For the convex mirror, the extended image forms between the focal point and the mirror. It is upright with respect to
the object, is a virtual image, and is smaller than the object.

Summary of Ray-Tracing Rules
Ray tracing is very useful for mirrors. The rules for ray tracing are summarized here for reference:

• A ray travelling parallel to the optical axis of a spherical mirror is reflected along a line that goes through the focal
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point of the mirror (ray 1 in Figure 2.9).

• A ray travelling along a line that goes through the focal point of a spherical mirror is reflected along a line parallel
to the optical axis of the mirror (ray 2 in Figure 2.9).

• A ray travelling along a line that goes through the center of curvature of a spherical mirror is reflected back along
the same line (ray 3 in Figure 2.9).

• A ray that strikes the vertex of a spherical mirror is reflected symmetrically about the optical axis of the mirror (ray
4 in Figure 2.9).

We use ray tracing to illustrate how images are formed by mirrors and to obtain numerical information about optical
properties of the mirror. If we assume that a mirror is small compared with its radius of curvature, we can also use algebra
and geometry to derive a mirror equation, which we do in the next section. Combining ray tracing with the mirror equation
is a good way to analyze mirror systems.

Image Formation by Reflection—The Mirror Equation
For a plane mirror, we showed that the image formed has the same height and orientation as the object, and it is located at
the same distance behind the mirror as the object is in front of the mirror. Although the situation is a bit more complicated
for curved mirrors, using geometry leads to simple formulas relating the object and image distances to the focal lengths of
concave and convex mirrors.

Consider the object OP shown in Figure 2.10. The center of curvature of the mirror is labeled C and is a distance R from
the vertex of the mirror, as marked in the figure. The object and image distances are labeled do and di , and the object

and image heights are labeled ho and hi , respectively. Because the angles ϕ and ϕ′ are alternate interior angles, we

know that they have the same magnitude. However, they must differ in sign if we measure angles from the optical axis, so
ϕ = −ϕ′ . An analogous scenario holds for the angles θ and θ′ . The law of reflection tells us that they have the same

magnitude, but their signs must differ if we measure angles from the optical axis. Thus, θ = −θ′ . Taking the tangent of the

angles θ and θ′ , and using the property that tan (−θ) = −tan θ , gives us

(2.3)tan θ = ho
do

tan θ′ = −tan θ = hi
di

⎫

⎭

⎬
⎪

⎪
ho
do

= −hi
di

or − ho
hi

= do
di

.

Figure 2.10 Image formed by a concave mirror.

Similarly, taking the tangent of ϕ and ϕ′ gives

tan ϕ = ho
do − R

tan ϕ′ = −tan ϕ = hi
R − di

⎫

⎭

⎬
⎪

⎪
ho

do − R = − hi
R − di

or − ho
hi

= do − R
R − di

.

Combining these two results gives
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do
di

= do − R
R − di

.

After a little algebra, this becomes

(2.4)1
do

+ 1
di

= 2
R.

No approximation is required for this result, so it is exact. However, as discussed above, in the small-angle approximation,
the focal length of a spherical mirror is one-half the radius of curvature of the mirror, or f = R/2 . Inserting this into

Equation 2.3 gives the mirror equation:

(2.5)1
do

+ 1
di

= 1
f .

The mirror equation relates the image and object distances to the focal distance and is valid only in the small-angle
approximation. Although it was derived for a concave mirror, it also holds for convex mirrors (proving this is left as an
exercise). We can extend the mirror equation to the case of a plane mirror by noting that a plane mirror has an infinite radius
of curvature. This means the focal point is at infinity, so the mirror equation simplifies to

(2.6)do = −di

which is the same as Equation 2.1 obtained earlier.

Notice that we have been very careful with the signs in deriving the mirror equation. For a plane mirror, the image distance
has the opposite sign of the object distance. Also, the real image formed by the concave mirror in Figure 2.10 is on the
opposite side of the optical axis with respect to the object. In this case, the image height should have the opposite sign
of the object height. To keep track of the signs of the various quantities in the mirror equation, we now introduce a sign
convention.

Sign convention for spherical mirrors

Using a consistent sign convention is very important in geometric optics. It assigns positive or negative values for the
quantities that characterize an optical system. Understanding the sign convention allows you to describe an image without
constructing a ray diagram. This text uses the following sign convention:

1. The focal length f is positive for concave mirrors and negative for convex mirrors.

2. The image distance di is positive for real images and negative for virtual images.

Notice that rule 1 means that the radius of curvature of a spherical mirror can be positive or negative. What does it mean
to have a negative radius of curvature? This means simply that the radius of curvature for a convex mirror is defined to be
negative.

Image magnification

Let’s use the sign convention to further interpret the derivation of the mirror equation. In deriving this equation, we found
that the object and image heights are related by

(2.7)−ho
hi

= do
di

.

See Equation 2.3. Both the object and the image formed by the mirror in Figure 2.10 are real, so the object and image
distances are both positive. The highest point of the object is above the optical axis, so the object height is positive. The
image, however, is below the optical axis, so the image height is negative. Thus, this sign convention is consistent with our
derivation of the mirror equation.

Equation 2.7 in fact describes the linear magnification (often simply called “magnification”) of the image in terms of the
object and image distances. We thus define the dimensionless magnification m as follows:

(2.8)m = hi
ho

.

If m is positive, the image is upright, and if m is negative, the image is inverted. If |m| > 1 , the image is larger than the
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object, and if |m| < 1 , the image is smaller than the object. With this definition of magnification, we get the following

relation between the vertical and horizontal object and image distances:

(2.9)m = hi
ho

= − di
do

.

This is a very useful relation because it lets you obtain the magnification of the image from the object and image distances,
which you can obtain from the mirror equation.

Example 2.1

Solar Electric Generating System

One of the solar technologies used today for generating electricity involves a device (called a parabolic trough
or concentrating collector) that concentrates sunlight onto a blackened pipe that contains a fluid. This heated
fluid is pumped to a heat exchanger, where the thermal energy is transferred to another system that is used to
generate steam and eventually generates electricity through a conventional steam cycle. Figure 2.11 shows such
a working system in southern California. The real mirror is a parabolic cylinder with its focus located at the pipe;
however, we can approximate the mirror as exactly one-quarter of a circular cylinder.

Figure 2.11 Parabolic trough collectors are used to generate electricity in southern California. (credit:
“kjkolb”/Wikimedia Commons)

a. If we want the rays from the sun to focus at 40.0 cm from the mirror, what is the radius of the mirror?

b. What is the amount of sunlight concentrated onto the pipe, per meter of pipe length, assuming the

insolation (incident solar radiation) is 900 W/m2 ?

c. If the fluid-carrying pipe has a 2.00-cm diameter, what is the temperature increase of the fluid per meter
of pipe over a period of 1 minute? Assume that all solar radiation incident on the reflector is absorbed by
the pipe, and that the fluid is mineral oil.

Strategy

First identify the physical principles involved. Part (a) is related to the optics of spherical mirrors. Part (b)
involves a little math, primarily geometry. Part (c) requires an understanding of heat and density.

Solution
a. The sun is the object, so the object distance is essentially infinity: do = ∞ . The desired image distance

is di = 40.0 cm . We use the mirror equation to find the focal length of the mirror:
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1
do

+ 1
di

= 1
f

f = ⎛
⎝

1
do

+ 1
di

⎞
⎠

−1

= ⎛
⎝

1
∞ + 1

40.0 cm
⎞
⎠

−1

= 40.0 cm

Thus, the radius of the mirror is R = 2 f = 80.0 cm .

b. The insolation is 900 W/m2 . You must find the cross-sectional area A of the concave mirror, since the

power delivered is 900 W/m2 × A . The mirror in this case is a quarter-section of a cylinder, so the area

for a length L of the mirror is A = 1
4(2πR)L . The area for a length of 1.00 m is then

A = π
2R(1.00 m) = (3.14)

2 (0.800 m)(1.00 m) = 1.26 m2.

The insolation on the 1.00-m length of pipe is then

⎛
⎝9.00 × 102 W

m2
⎞
⎠

⎛
⎝1.26 m2⎞

⎠ = 1130 W.

c. The increase in temperature is given by Q = mcΔT . The mass m of the mineral oil in the one-meter

section of pipe is

m = ρV = ρπ⎛
⎝
d
2

⎞
⎠
2

(1.00 m)

= ⎛
⎝8.00 × 102 kg/m3⎞

⎠(3.14)(0.0100 m)2(1.00 m)
= 0.251 kg

Therefore, the increase in temperature in one minute is

ΔT = Q/mc

= (1130 W)(60.0 s)
⎛
⎝0.251 kg⎞

⎠
⎛
⎝1670 J · kg/°C⎞

⎠

= 162°C

Significance

An array of such pipes in the California desert can provide a thermal output of 250 MW on a sunny day, with
fluids reaching temperatures as high as 400°C . We are considering only one meter of pipe here and ignoring heat

losses along the pipe.

Example 2.2

Image in a Convex Mirror

A keratometer is a device used to measure the curvature of the cornea of the eye, particularly for fitting contact
lenses. Light is reflected from the cornea, which acts like a convex mirror, and the keratometer measures the
magnification of the image. The smaller the magnification, the smaller the radius of curvature of the cornea. If
the light source is 12 cm from the cornea and the image magnification is 0.032, what is the radius of curvature of
the cornea?

Strategy

If you find the focal length of the convex mirror formed by the cornea, then you know its radius of curvature (it’s
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twice the focal length). The object distance is do = 12 cm and the magnification is m = 0.032 . First find the

image distance di and then solve for the focal length f.

Solution

Start with the equation for magnification, m = −di/do . Solving for di and inserting the given values yields

di = −mdo = −(0.032)(12 cm) = −0.384 cm

where we retained an extra significant figure because this is an intermediate step in the calculation. Solve the
mirror equation for the focal length f and insert the known values for the object and image distances. The result is

1
do

+ 1
di

= 1
f

f = ⎛
⎝

1
do

+ 1
di

⎞
⎠

−1

= ⎛
⎝

1
12 cm + 1

−0.384 cm
⎞
⎠

−1

= −0.40 cm

The radius of curvature is twice the focal length, so

R = 2 f = −0.80 cm

Significance

The focal length is negative, so the focus is virtual, as expected for a concave mirror and a real object. The radius
of curvature found here is reasonable for a cornea. The distance from cornea to retina in an adult eye is about
2.0 cm. In practice, corneas may not be spherical, which complicates the job of fitting contact lenses. Note that
the image distance here is negative, consistent with the fact that the image is behind the mirror. Thus, the image
is virtual because no rays actually pass through it. In the problems and exercises, you will show that, for a fixed
object distance, a smaller radius of curvature corresponds to a smaller the magnification.

Problem-Solving Strategy: Spherical Mirrors

Step 1. First make sure that image formation by a spherical mirror is involved.

Step 2. Determine whether ray tracing, the mirror equation, or both are required. A sketch is very useful even if ray
tracing is not specifically required by the problem. Write symbols and known values on the sketch.

Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).

Step 4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

Step 5. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.

Step 6. Most quantitative problems require using the mirror equation. Use the examples as guides for using the mirror
equation.

Step 7. Check to see whether the answer makes sense. Do the signs of object distance, image distance, and focal length
correspond with what is expected from ray tracing? Is the sign of the magnification correct? Are the object and image
distances reasonable?

Departure from the Small-Angle Approximation
The small-angle approximation is a cornerstone of the above discussion of image formation by a spherical mirror. When
this approximation is violated, then the image created by a spherical mirror becomes distorted. Such distortion is called
aberration. Here we briefly discuss two specific types of aberrations: spherical aberration and coma.

Spherical aberration

Consider a broad beam of parallel rays impinging on a spherical mirror, as shown in Figure 2.12.
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Figure 2.12 (a) With spherical aberration, the rays that are farther from the optical axis and the rays that are closer to
the optical axis are focused at different points. Notice that the aberration gets worse for rays farther from the optical
axis. (b) For comatic aberration, parallel rays that are not parallel to the optical axis are focused at different heights and
at different focal lengths, so the image contains a “tail” like a comet (which is “coma” in Latin). Note that the colored
rays are only to facilitate viewing; the colors do not indicate the color of the light.

The farther from the optical axis the rays strike, the worse the spherical mirror approximates a parabolic mirror. Thus, these
rays are not focused at the same point as rays that are near the optical axis, as shown in the figure. Because of spherical
aberration, the image of an extended object in a spherical mirror will be blurred. Spherical aberrations are characteristic of
the mirrors and lenses that we consider in the following section of this chapter (more sophisticated mirrors and lenses are
needed to eliminate spherical aberrations).

Coma or comatic aberration

Coma is similar to spherical aberration, but arises when the incoming rays are not parallel to the optical axis, as shown in
part (b) of Figure 2.12. Recall that the small-angle approximation holds for spherical mirrors that are small compared to
their radius. In this case, spherical mirrors are good approximations of parabolic mirrors. Parabolic mirrors focus all rays
that are parallel to the optical axis at the focal point. However, parallel rays that are not parallel to the optical axis are
focused at different heights and at different focal lengths, as show in part (b) of Figure 2.12. Because a spherical mirror
is symmetric about the optical axis, the various colored rays in this figure create circles of the corresponding color on the
focal plane.

Although a spherical mirror is shown in part (b) of Figure 2.12, comatic aberration occurs also for parabolic mirrors—it
does not result from a breakdown in the small-angle approximation. Spherical aberration, however, occurs only for spherical
mirrors and is a result of a breakdown in the small-angle approximation. We will discuss both coma and spherical aberration
later in this chapter, in connection with telescopes.
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